Venecia


General description
Applications and Validation
Example 1: ITER. Toroidal Field Coil
Eхample 2: ITER. Central Solenoid and Poloidal Field Coils
AutoCAD meshing
Structure of the code, modelling strategy, interface
NUMERICAL SOLUTION
Summary
MATHEMATICAL MODELS:
Helium flow modelling
Conductor modelling
Collector modelling
Valve modelling
Modelling of solids
Pump modelling
Coolant properties



MATHEMATICAL MODELS. Modelling of solids

To simulate transient heat diffusion in the winding composite a 2D model is used in the Cartesian or axial-symmetrical approach. A differential equation for temperature over the given cross-section S of the winding k is:



n=0 - Cartesian coordinates; n=1 - cylindrical coordinates.

The boundary condition of the third kind is formulated for the section k having heat exchange with helium flow i



where hi is the heat transfer coefficient and is the corresponding temperature of helium inside the channel i. At the outer surface of the winding the appropriate boundary condition is formulated.






Germany (headquarters): Alphysica GmbH. Unterreut, 6, D-76135, Karlsruhe, Germany,
Phone: +49 (0)163 904-85-61, Fax: +49 (0)7219 444-26-55, E-mail: info@alphysica.com

USA: Alphysica Inc. 414, Jackson street, San Francisco, CA 94111, USA,
Phone/Fax: +1 415.230.23.63, E-mail:usa@alphysica.com

Russia: Alphysica Ltd. 55, ul. Mayakovskogo, 191025, St.Petersburg, Russia,
Phone/Fax: +7 (812) 335-95-04, E-mail: russia@alphysica.com

Copyright © 1994-2010